Chapter 7: Number Patterns

Ex-7(B)-Page 171

Q1. Find a formula for the general term for each of the following number sequences:
b) $-4,-1,2,5,8, \ldots$

Ans: $W e$ have, $T_{n}=T_{1}+(n-1) d$

$$
\mathrm{T}_{1}=-4
$$

$$
d=-4,-1, \quad 2, \quad 5, \quad 8, \quad \cdots
$$

$$
+3 \quad+3 \quad+3 \quad+3
$$

$$
=+3
$$

Therefore, $\mathrm{T}_{\mathrm{n}}=\mathrm{T}_{1}+(\mathrm{n}-1) \mathrm{d}$

$$
\begin{aligned}
& =-4+(n-1) 3 \\
& =-4+3 n-3 \\
& =3 n-7
\end{aligned}
$$

c) $\mathbf{6 0}, 67,74,81,88$, ...

Ans: We have, $T_{n}=T_{1}+(n-1) d$

$$
\mathrm{T}_{1}=60
$$

$d=60, \quad 67, \quad 74, \quad 81, \quad 88, \ldots$

$=+7$
Therefore, $T_{n}=T_{1}+(n-1) d$

$$
\begin{aligned}
& =60+(n-1) 7 \\
& =60+7 n-7 \\
& =7 n+53
\end{aligned}
$$

Q3. Consider the sequence $3,6,9,12,15, \ldots$
i) Write down the next two terms of the sequence.

Next two terms are 18 and 21.
ii) Find, in terms of n, a formula for the nth term of the sequence.

Ans: We have, $T_{n}=T_{1}+(n-1) d$

$$
\mathrm{T}_{1}=3
$$

$$
\begin{aligned}
\mathrm{d} & =3, \quad 6, \quad 9, \quad 12, \quad 15, \cdots \\
& =+3
\end{aligned}
$$

Therefore, $T_{n}=T_{1}+(n-1) d$

$$
\begin{aligned}
& =3+(n-1) 3 \\
& =3+3 n-3 \\
& =3 n
\end{aligned}
$$

iii) Hence, find the $105^{\text {th }}$ term.

Ans: We have, $\mathrm{T}_{\mathrm{n}}=3 \mathrm{n}$
Therefore, $\mathrm{T}_{105}=3 \times 105$
$=315$

