Level 8 Mathematics Chapter 4

Solution to Assignment Video 2

Exercise – 2

2. <u>Solution</u>

No. of sides = 6 sides (Hexagon)

Sum of interior angles of a polygon = $(n - 2) \times 180^{\circ}$

$$= (6 - 2) \times 180^{\circ}$$
$$= 4 \times 180^{\circ}$$
$$= 720^{\circ}$$

$$y = \frac{sum \ of \ interior \ angles}{number \ of \ sides}$$
$$y = \frac{720^{\circ}}{6}$$
$$y = \frac{120^{\circ}}{6}$$

 $x + y = 180^{\circ} \text{ (angles on a straight line add to 180^{\circ})}$ $x + 120^{\circ} = 180^{\circ}$ $x = 180^{\circ} - 120^{\circ}$ $x = 60^{\circ}$

9) Solution

Sum of exterior angles of a polygon = 360° One exterior angle = 40° So, no. of sides for the regular polygon = $\frac{360^{\circ}}{40}$ = 9 sides

Exercise – 3 (Solution to assignment answers – video 2)

1. Solution

 $\frac{To find a}{a = 180^{\circ} - 64^{\circ}}$ (angles on a straight line added upto 180° $a = 116^{\circ}$

<u>To find b</u>

 $a + b = 180^{\circ}$ (allied angles, add to 180°)

 $116^{\circ} + b = 180^{\circ}$

 $b = 180^{\circ} - 116^{\circ}$

 $b = 64^{\circ}$

<u>To find c</u>

c = b = 64^o (vertically opposite angles are equal

6. Solution To find u $90^{\circ} + 42^{\circ} + u = 180^{\circ}$ (The sum of angles of a triangle = 180°) $u = 180^{\circ} - 132^{\circ}$ $u = 48^{\circ}$

To find t $42^{o} + t = 90^{o}$ $t = 90^{o} - 42^{o}$ $t = 48^{o}$

To find y

y = 42° (vertically opposite angles are equal

Solution

(vertically opposite angles are equal)

To find x

- $2x + 3x = 180^{\circ}$ (allied angles
- $5x = 180^{\circ}$

 $x = 36^{\circ}$

So, $2x = 2 \times 36^{\circ}$

 $2x = 72^{\circ}$

$$3x = 3 \times 36^{\circ}$$
$$3x = 108^{\circ}$$

<u>Exercise – 4 (Solution to assignment video 3)</u>

Find x, all lengths are in cm.

4) <u>Solution</u> $x^{2} = 9^{2} + 9^{2}$ (pythagores thorem) $x^{2} = 81 + 81$ $x^{2} = 162$ $x = \sqrt{162}$ $x = 12.7 \, cm$

6)

Solution

$$b^2 = 5^2 + 3^2$$
 (pythagores thorem)
 $b^2 = 25 - 9$ (pythagores thorem)
 $b = \sqrt{16}$
 $b = 4 cm$

$$x^2 = 4^2 + 4^2$$

 $x^2 = 16 + 16$
 $x = \sqrt{32}$
 $x = 5.66 \, cm$

Length of the diagonal of the rectangle = 9.85 cm

Sides of the square is 7.07 cm each

20. Solution

$$x^{2} = 11^{2} - 5^{2}$$

 $x^{2} = 121 - 25$
 $x^{2} = 96$
 $x = \sqrt{96}$
 $x = 9.80 \, cm$

Vertical height of cone is 9.80 cm