Level – 9

Chapter 8

Topic –**Function**

Answers to Assignment video 1 and 2 of Functions

Exercise – 11 Answers to Assignment video 1

1. a) <u>Solution</u>

Given $h: x \to x^2 + 1$

To find h(2)

$$h(2) = x^2 + 1$$

= 5

 $= 2^2 + 1$

To find h(-3) $h(-3) = x^2 + 1$ $= (-3)^2 + 1$ = 9 + 1= 10

To find h(o) $h(0) = x^{2} + 1$ $= 0^{2} + 1$ = 1

To find
$$g(-3)$$

 $g(-3) = 10x + 1$
 $= (10 \times -3) + 1$
 $= -30 + 1$
 $= -29$

7)
$$f: x \to 2x^2 + 1$$

 $x \to \text{square} \to \times 2 \to +1 \to 2x^2 + 1$

11) $f: x \rightarrow (7-3x)^2$

$$x \to \times 3 \to \text{subtract from } 7 \to \text{square} \to (7 - 3x)^2$$

16) Given f : x → 1 + 2xa) To find f(5)f(5) = 1 - 2x= 1 - (2 × 5)= 1 - 10

= -9

To find
$$f(-5)$$

 $f(-5) = 1 - 2x$
 $= 1 - (2 \times -5)$
 $= 1 - (-10)$

= 11

16 b) Given
$$g: x \rightarrow \frac{x^3}{10}$$

To find $g(2)$
 $g2 = \frac{x^3}{10}$
 $= \frac{2^3}{10}$
 $= \frac{8}{10}$

To find
$$g(\frac{1}{2})$$

 $g\left(\frac{1}{2}\right) = \frac{x^3}{10}$
 $= \frac{(\frac{1}{2})^3}{10}$
 $= \frac{1}{8} \times \frac{1}{10}$

- 20 a) k: $x \rightarrow \frac{2x^2}{3}$ To find x, Given k(x) = 6 $2x^2$ =6x3 x^2 = 9 x = 3
- 20 b) m: $x \to 10 x^2$ To find x, Given m(x) = 1 $10 - x^2 = 1$ $-x^2 = 1 - 10$ $-x^2 = -9$ $x^2 = 9$ x = 3

Exercise - 12 Answers to assignment :- video 2 1 a) Solution Given $f: x \to 4x$ $g: x \to x + 5$ So, g(x) = x + 5 fg = 4(x + 5)In the form $x \to 4(x + 5)$ 1 b) Given $g: x \to x + 5$ $f: x \to 4x$

So, fx = 4x

gf = 4x + 5

In the form $x \rightarrow 4x + 5$

7) Solution

7 a) Im(2) Given m: $x \to 3x - 1$ So, m(2) = 3x - 1= $(3 \times 2) - 1$ = 6 - 1= 5To find

 $Im(2) = 2x + 1 \text{ Given } I: x \rightarrow 2x + 1$ So, I(5) = 2x + 1 = (2 × 5) +1 = 10 +1 = 11 So, Im(2) = 11

7b) nl(1)

Given I:
$$x \rightarrow 2x + 1$$

$$I(1) = 2x + 1$$

$$= 2+1$$

$$= 3$$
To find

$$nI(1) = x^{2} = x + 1)$$
 Given n: x

nl(1)= $x^2 = x + 1$) Given n: $x \to x^2$ So, n(3) = x^2 = 3^2 = 9 So, nl(1) = 9

11) Given
$$f: x \to 3(2x+4)$$

<u>Solution</u>

3(2x+4)

Let y = 3(2x + 4)

y = 6x + 12

Make x the subject

$$-6x = 12 - y$$
$$+x = \frac{y - 12}{6}$$

so the inverse function is $\frac{x-12}{6}$

Interchange *x* & *y*

$$x \rightarrow = \frac{x}{6} - \frac{12}{6}$$
$$x \rightarrow = \frac{x}{6} - 2$$

15) Solution

$$h: x \to \frac{1}{2} (4 + 5x) + 10$$

Let $y = \frac{1}{2} (4 + 5x) + 10$
 $y = 2 + \frac{5}{2}x + 10$
 $y = \frac{5}{2}x + 12$

Make x subject

$$\frac{5}{2}x = y - 12$$

$$5x = 2y - 24$$
$$x = \frac{2y - 24}{5}$$

so the inverse function is $\frac{2x-24}{5}$

For an inverse function we inverse *x* and *y*

$$so, x \rightarrow \frac{2x-24}{5}$$

21) Solution

$$g: x \to \left(\frac{\frac{x}{4}+6}{5}\right)+7$$

$$Let \ y = \left(\frac{\frac{x}{4}+6}{5}\right)+7$$

$$\mathbf{5}(\mathbf{y}-\mathbf{7})=\frac{\mathbf{x}}{\mathbf{4}}+\mathbf{6}$$

$$5y-35-6=\frac{x}{4}$$

$$4(5y-41)=x$$

$$20y - 164 = x$$

so the inverse function is 20x - 164

For an inverse function we inverse *x* and *y*

 $x \rightarrow 20x - 164$