## Chapter: 12

Volume \& Surface area
Assignment of part 3 ; (Text book pg.no : 347)

## Exercise 12 D :

Q3) A Solid consists of a Hemispher and a Cylinder which share a common base. The Cylinder has a base radius of 7 cm and a height of 10 cm . Find the
i) Volume
ii) Total Surface area of the solid


Given : Radius ( r ) $=7 \mathrm{~cm}$
Height of the cylinder $=10 \mathrm{~cm}$

## Solution:

(i) Volume of the solid
$=$ Volume of hemisphere + volume of cylinder $=\left(1 / 2 \times 4 / 3 \times \Pi \times r^{3}\right)+(\Pi x r \times h)$
$=1 / 2 \times 4 / 3 \times \pi \times 7^{3}+\pi \times 72 \times 10$
$=228(2 / 3) \pi+490 \pi$
$=718(2 / 3) \pi$
$=718 \times 2 / 3 \times 22 / 7$
$=2260 \mathrm{~cm}^{3}$
(ii) Total surface area of the solid

$$
\begin{aligned}
& \quad=\text { Flat surface of cylinder }+ \text { curved surface area of cylinder }+ \\
& \quad \text { curved surface area of hemisphere }=\Pi r^{2}+2 \Pi r h+2 \Pi r^{2} \\
& =\pi \times 7^{2}+2 \times \pi \times 7 \times 10+2 \times \pi \times 7^{2} \\
& = \\
& \hline 49 \pi+140 \pi+98 \pi \\
& = \\
& 287 \pi \\
& = \\
& 287 \times 22 / 7 \\
& = \\
& (6314) / 7 \\
& =
\end{aligned} 902 \mathrm{~cm}^{2} .
$$

| Name of the solid | Figure | Volume | Laterial/Curved Surface Area | Total Surface Area |
| :---: | :---: | :---: | :---: | :---: |
| Cuboid |  | lbh | $\begin{gathered} 2 l h+2 b h \\ \text { or } \\ 2 h(l+b) \end{gathered}$ | $\begin{gathered} 2 l h+2 b h+2 l b \\ \text { or } \\ 2(l h+b h+l b) \end{gathered}$ |
| Cube |  | $\mathrm{a}^{3}$ | $4 a^{2}$ | $\begin{gathered} 4 a^{2}+2 a^{2} \\ \text { or } \\ 6 a^{2} \end{gathered}$ |
| Right circular cylinder |  | $\pi r^{2} h$ | $2 \pi \mathrm{rh}$ | $\begin{gathered} 2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2} \\ \text { or } \\ 2 \pi \mathrm{r}(\mathrm{~h}+\mathrm{r}) \end{gathered}$ |
| Right circular cone |  | $\frac{1}{3} \pi r^{2} h$ | $\pi \mathrm{rl}$ | $\begin{gathered} \pi r \mathrm{rl}+\pi \mathrm{r}^{2} \\ \quad \text { or } \\ \pi \mathrm{r}(\mathrm{l}+\mathrm{r}) \end{gathered}$ |
| Sphere |  | $\frac{4}{3} \pi r^{3}$ | $4 \pi \mathrm{r}^{2}$ | $4 \pi r^{2}$ |
| Hemisphere |  | $\frac{2}{3} \pi r^{3}$ | $2 \pi \mathrm{r}^{2}$ | $\begin{gathered} 2 \pi r^{2}+\pi r^{2} \\ \text { or } \\ 3 \pi r^{2} \end{gathered}$ |

