Chapter: 12

Volume & Surface area

Assignment of part 3; (Text book pg.no: 347)

Exercise 12 D:

Q3) A Solid consists of a Hemispher and a Cylinder which share a common base. The Cylinder has a base radius of 7cm and a height of 10cm. Find the

- i) Volume
- ii) Total Surface area of the solid

Solution:

(i) Volume of the solid

= Volume of hemisphere + volume of cylinder = ($\frac{1}{2} \times \frac{4}{3} \times \prod x r^3$) + ($\prod x r x h$)

 $= 1/2 \times 4/3 \times \pi \times 7^3 + \pi \times 72 \times 10$

= 228 (2/3) π + 490π

= 718 (2/3) π

= 718 x 2/3 x 22/7 = 2260 cm³ (ii) Total surface area of the solid

= Flat surface of cylinder + curved surface area of cylinder + curved surface area of hemisphere = $\prod r^2 + 2\prod rh + 2\prod r^2$

$$= \pi \times 7^{2} + 2 \times \pi \times 7 \times 10 + 2 \times \pi \times 7^{2}$$

= 49π + 140π + 98π = 287π = 287 x 22/7 = (6314) / 7 = 902 cm²

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid	h b l	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+ <mark>2lb</mark> or 2(lh+bh+lb)
Cube	aaa	a ³	4a ²	4a ² + <mark>2a²</mark> or 6a ²
Right circular cylinder	h	πr²h	2πrh	$2\pi rh + 2\pi r^{2}$ or $2\pi r(h+r)$
Right circular cone	h	$\frac{1}{3}\pi r^2h$	πrl	$\pi r l + \pi r^{2}$ or $\pi r (l+r)$
Sphere	r	$\frac{4}{3}\pi r^3$	$4\pi r^2$	$4\pi r^2$
Hemisphere	r	$\frac{2}{3}\pi r^3$	$2\pi r^2$	$2\pi r^2 + \pi r^2$ or $3\pi r^2$