Al Moattassem International School - Jubail

Revision 3 - chapter 12 - Volume & Surface Area

Part 1

Fil	${\sf II}$ in ${\sf t}$	he B	lanl	ks:
-----	-------------------------	------	------	-----

1.Volume of Prism =

- 2. Volume of Pyramid = ____ x Volume of corresponding prism
- 3. Total Surface Area of Pyramid = _____
- 4. Volume of Sphere = 2/3 x _____

Part 2

Solve the Following:

- 1. A Pyramid has a square base of length 12 m. Given that the slant height of the Pyramid is 15m, draw its net and hence find its total surface area.
- 2. OABC is a triangular pyramid with a base area of 15 cm² and a height of 4 cm. Find the volume of the triangular pyramid.

- 3.A Cone has a circular base of radius 8 cm and a height of 17 cm. Find the volume of the cone.
- 4. A Cone has a circular base of radius 9 cm and a slant height of 5 cm. Find the total Surface Area of the Cone.
- 5. Find the volume of each of the Sphere with the radius of 8 cm.
- 6. Find the surface area of each of the Sphere with the radius of 12 cm.
- 7. Find the Total Surface Area of a hemisphere of radius 7cm (Take Π = 3.142)
- 8. A Solid consists of a cone and a hemisphere which share a common base. The Solid has a height of 50 cm and the hemisphere has a diameter of 30cm.

Find

- i) The volume
- ii) Total Surface Area of the Solid.

Shape	Surface Area Formula	Volume Formula
Shape	Sarrace Area Formula	Volume Formula
Cube	$SA=6s^2$	$V=s^3$
	where $s = length of the side$	where $s = length of the side$
	G4 - 0(1 - 1 1 - 1)	**
Cuboid	SA = 2(lw + lh + wh)	$oldsymbol{V} = oldsymbol{lwh}$
	where $l = length$, $w = width$, $h = height$	where $I = \text{length}$, $W = \text{width}$, $h = \text{height}$
Prism	SA = 2B + ph	V = Bh
	where $B = $ area of base, $p = $ perimeter of	where $B = $ area of base, $h = $ height
	base, $h=$ height	
Cylinder	$SA = 2\pi r^2 + 2\pi r h$	$V=\pi r^2 h$
	where $r = \text{radius}$, $h = \text{height}$	where $r = \text{radius}$, $h = \text{height}$
Hollow	$SA=2\pi rh+2\pi Rh+2\left(\pi R^{2}-\pi r^{2} ight)$	$V=\pi R^2 h - \pi r^2 h$
Cylinder	where $R = \text{radius of the outer surface}, r =$	where $R = \text{radius}$ of the outer surface, r
	radius of the inner surface	= radius of the inner surface
Cone	$SA = \pi r^2 + \pi r s$	$V=rac{1}{3}\pi r^2 h$
	where $r = \text{radius}$, $s = \text{slant height}$	where $r = \text{radius}, h = \text{height}$
Pyramid	SA = area of base + area of each of the lateral	$V=rac{1}{3}Bh$
	faces	where $B = $ area of the base, $h = $ height
	Regular pyramid = area of base + $\frac{1}{2}ps$	
	where $p = perimeter of the base, s = slant$	
	height	
	Square pyramid = $b^2 + 2bs$	
	where $b = length$ of the base, $s = slant$ height	
Sphere	$SA = 4\pi r^2$	$V=rac{4}{3}\pi r^3$
Splicie	where $r = \text{radius}$	where $r = \text{radius}$
	micro / - Iddius	where / = radius
Hemisphere	$SA=3\pi r^2$	$V=rac{2}{3}\pi r^3$
	where r = radius	where r = radius