Al Moattassem International School - Jubail

Revision 3 - chapter 12 - Volume \& Surface Area

Part 1

Fill in the Blanks:
1.Volume of Prism = \qquad
2. Volume of Pyramid $=\ldots \quad \times$ Volume of corresponding prism
3. Total Surface Area of Pyramid $=$ \qquad
4. Volume of Sphere $=2 / 3 x$ \qquad

Part 2

Solve the Following:

1. A Pyramid has a square base of length 12 m . Given that the slant height of the Pyramid is 15 m , draw its net and hence find its total surface area.
2. $O A B C$ is a triangular pyramid with a base area of $15 \mathrm{~cm}^{2}$ and a height of 4 cm . Find the volume of the triangular pyramid.
3.A Cone has a circular base of radius 8 cm and a height of 17 cm . Find the volume of the cone.
3. A Cone has a circular base of radius 9 cm and a slant height of 5 cm . Find the total Surface Area of the Cone.
4. Find the volume of each of the Sphere with the radius of 8 cm.
5. Find the surface area of each of the Sphere with the radius of 12 cm .
6. Find the Total Surface Area of a hemisphere of radius 7 cm
(Take $\Pi=3.142$)
7. A Solid consists of a cone and a hemisphere which share a common base. The Solid has a height of 50 cm and the hemisphere has a diameter of 30 cm .

Find
i) The volume
ii) Total Surface Area of the Solid.

Shape	Surface Area Formula	Volume Formula
Cube	$S A=6 s^{2}$ where $s=$ length of the side	$V=s^{3}$ where $s=$ length of the side
Cuboid	$S A=2(l w+l h+w h)$ where $I=$ length, $w=$ width, $h=$ height	$V=l w h$ where $/=$ length, $w=$ width, $h=$ height
Prism	$S A=2 B+p h$ where $B=$ area of base, $p=$ perimeter of base, $h=$ height	$V=B h$ where $B=$ area of base, $h=$ height
Cylinder	$\begin{aligned} S A & =2 \pi r^{2}+2 \pi r h \\ \text { where } r & =\text { radius, } h=\text { height } \end{aligned}$	$V=\pi r^{2} h$ where $r=$ radius, $h=$ height
Hollow Cylinder	$S A=2 \pi r h+2 \pi R h+2\left(\pi R^{2}-\pi r^{2}\right)$ where $R=$ radius of the outer surface, $r=$ radius of the inner surface	$V=\pi R^{2} h-\pi r^{2} h$ where $R=$ radius of the outer surface, r $=$ radius of the inner surface
Cone	$S A=\pi r^{2}+\pi r s$ where $r=$ radius, $s=$ slant height	$V=\frac{1}{3} \pi r^{2} h$ where $r=$ radius, $h=$ height
Pyramid	```SA = area of base + area of each of the lateral faces Regular pyramid \(=\) area of base \(+\frac{1}{2} p s\) where \(p=\) perimeter of the base, \(s=\) slant height Square pyramid \(=b^{2}+2 b s\) where \(b=\) length of the base, \(s=\) slant height```	$V=\frac{1}{3} B h$ where $B=$ area of the base, $h=$ height
Sphere	$\begin{gathered} S A=4 \pi r^{2} \\ \text { where } r=\text { radius } \end{gathered}$	$V=\frac{4}{3} \pi r^{3}$ where $r=$ radius
Hemisphere	$\begin{gathered} S A=3 \pi r^{2} \\ \text { where } r=\text { radius } \end{gathered}$	$V=\frac{2}{3} \pi r^{3}$ where $r=$ radius

