Al Moattassem International School - Jubail

Revision 3 - chapter 12 - Volume \& Surface Area

Part 1

Fill in the Blanks:
1.Volume of Prism = base area x height
2. Volume of Pyramid $=\underline{1 / 3} \times$ Volume of corresponding prism
3. Total Surface Area of Pyramid $=$ total area of all faces
4. Volume of Sphere $=\mathbf{2 / 3} \times$ volume of cylinder

Part 2

Solve the Following:

1. A Pyramid has a square base of length 12 m . Given that the slant height of the Pyramid is 15 m , and draw its net hence find its total surface area.

Given: Square base of length $=12 \mathrm{~m}$
Square base area $=12 \times 12=144 \mathrm{~m}^{2}$

Slant height (I)=15 m
To find:
i) Draw its net
ii) Find its total surface area

Solution:

Area of each triangular face $=\frac{1}{2} \times 12 \times 15$
$=90 \mathrm{~m}^{2}$
Area of square base $=12 \times 12$

$$
=144 \mathrm{~m}^{2}
$$

\therefore Total surface area of pyramid
$=4 \times$ area of each triangular face + area of square base
$=4 \times 90+144$
$=504 \mathrm{~m}^{2}$
2) $O A B C$ is a triangular pyramid with a base area of $15 \mathrm{~cm}^{2}$ and a height of 4 cm . Find the volume of the triangular pyramid.

Given: base area $=15 \mathrm{~cm}^{2}$

$$
\text { Height }=4 \mathrm{~cm}
$$

To Find: Volume of the triangular pyramid = ?

Solution:

Volume of triangular pyramid $=\frac{1}{3} \times$ base area \times height

$$
\begin{aligned}
& =\frac{1}{3} \times 15 \times 4 \\
& =20 \mathrm{~cm}^{3}
\end{aligned}
$$

3.A Cone has a circular base of radius 8 cm and a height of 17 cm . Find the volume of the cone.

Given: Radius (r) = 8cm

$$
\text { Height }(\mathrm{h})=17 \mathrm{~cm}
$$

To find: Volume of the cone $=$?

Volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times 8^{2} \times 17 \\
& =\frac{1088}{3} \times \frac{22}{7} \\
& =1140 \mathrm{~cm}^{3}
\end{aligned}
$$

4.A Cone has a circular base of radius 9 cm and a slant height of 5 cm . Find the total Surface Area of the Cone. (Take $\Pi=3.142$)

Given: radius $(r)=9 \mathrm{~cm}$
Slant height $(I)=5 \mathrm{~cm}$

To Find: Total Surface Area of the Cone = ?
Solution:

$$
\begin{aligned}
\text { Total surface area of cone } & =\pi r l+\pi r^{2} \\
& =\pi \times 9 \times 5+\pi+9^{2} \\
& =45 \pi+81 \pi \\
& =126 \pi \\
& =396 \mathrm{~cm}^{2}
\end{aligned}
$$

5. Find the volume of each of the Sphere with the radius of 8 cm .

Given: Radius $=\mathbf{8 c m}$

To find: Volume of the Sphere = ?

Solution:
Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \pi \times 8^{3} \\
& =2146 \mathrm{~cm}^{3}
\end{aligned}
$$

6. Find the surface area of the Sphere with the radius of 12 cm .

Given: Radius(r)= $\mathbf{1 2} \mathbf{~ c m}$
To Find: Surface Area of the Sphere = ?
Solution:

Surface area of sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& =4 \times \pi \times 12^{2} \\
& =576 \pi \\
& =1810 \mathrm{~cm}^{2}
\end{aligned}
$$

7. Find the Total Surface Area of a hemisphere of radius 7 cm
(Take $\Pi=3.142$)
Given: Radius $=7 \mathrm{~cm}$

To Find: Total Surface Area of a Hemisphere = ?

Solution:

$$
\begin{aligned}
\text { Total surface area of hemisphere } & =\pi r^{2}+\frac{1}{2} \times 4 \pi r^{2} \\
& =3 \pi r^{2} \\
& =3 \times \pi \times 7^{2} \\
& =147 \pi \\
& =147 \times 3.142 \\
& =462 \mathrm{~cm}^{2}
\end{aligned}
$$

8. A Solid consists of a cone and a hemisphere which share a common base. The Solid has a height of 50 cm and the hemisphere has a diameter of 30 cm . Find
i) The volume
ii) Total Surface Area of the Solid.

Given: Height $=50 \mathrm{~cm}$
Diameter $=30 \mathrm{~cm}$
To Find:
i) The Volume
ii) Total Surface Area of the Solid

Solution:
(i) Radius of hemisphere $=30 \div 2$

$$
=15 \mathrm{~cm}
$$

Height of cone $=50-15$

$$
=35 \mathrm{~cm}
$$

Volume of solid $=$ volume of cone + volume of hemisphere

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times 15^{2} \times 35+\frac{1}{2} \times \frac{4}{3} \times \pi \times 15^{3} \\
& =2625 \pi+2250 \pi \\
& =4875 \pi \\
& =15321 \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) Using Pythagoras' Theorem,

Slant height of cone $=\sqrt{15^{2}+35^{2}}$
$=38.08 \mathrm{~cm}$
Total surface area of solid
= curved surface area of cone

+ curved surface area of hemisphere
$=\pi \times 15 \times 38.08+2 \times \pi \times 15^{2}$
$=571.2 \pi+450 \pi$
$=1021.2 \pi$
$=3210 \mathrm{~cm}^{2}$

