<u>CHAPTER – 8</u> SETS , VECTORS AND FUNCTIONS

• Topic – Vectors

Vectors in Geometry

In geometry problems involving vectors, the vectors can be written using a pair of capital letters with an arrow above them.

Vectors

A vector quantity has both size and direction. Vectors can be added, subtracted and multiplied by a scalar. Geometrical problems can be solved using vectors.

Vector addition and subtraction

When 2 vectors are added or subtracted the vector produced is called the resultant.

The resultant is identified by a double arrowhead.

To obtain the resultant vector a + b, the tail of b is joined to the nose of a.

To obtain the resultant vector $\mathbf{b} + \mathbf{a}$, the tail of a is joined to the nose of \mathbf{b} .

So adding "nose to tail" or "tail to nose" gives the same resultant vector.

Multiplication by a Scalar

- Ordinary numbers are scalars
- Scalars are easy to use. Just treat them as normal numbers.
- Scalars have magnitude but no direction. Vectors can be multiplied by a scalar to produce another vector

When x is multiplied by -3 the result is -3x.

$$\xrightarrow{x}$$
 $\xrightarrow{-3x}$

Note:

(1) The negative sign reverses the direction of the vector.

Relationship between hexagon and

<u>vector</u>

Remember: A hexagon is a six-sided polygon or 6-gon. The word hexagon comes from the Greek 'hex', meaning six, and 'gonia', meaning corner or angle.

- 1) Opposite sides of a regular hexagon are parallel
 Side AB parallel to side DE
 Side BC parallel to side EF
 Side CD parallel to side FA
- 2) For a regular hexagon all sides are equal
- 3)For a regular hexagon. Given side BC = x then diagonal AD = 2x

In the figure, we should take note of the following vectors: 1) $\overrightarrow{BE} = 2 \overrightarrow{BO} = 2 \overrightarrow{OE}$ 2) $\overrightarrow{OA} = \overrightarrow{CB} = a$ 3) $\overrightarrow{OC} = \overrightarrow{AB} = c$

A vector between two points A and B is described as: \overline{AB} , or Q

The vector can also be represented by the **column vector** $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

The top number is how many to move in the positive \boldsymbol{X} -direction and the bottom number is how many to move in the positive \boldsymbol{Y} -direction. Vectors are equal if they have the same magnitude and direction regardless of where they are. Example:-

$$\overrightarrow{CD} = \begin{pmatrix} \mathbf{1} \\ \mathbf{4} \end{pmatrix} \overrightarrow{EF} = \begin{pmatrix} \mathbf{1} \\ \mathbf{4} \end{pmatrix}$$

So $\overrightarrow{CD} = \overrightarrow{EF}$

Vector arithmetic

Multiplying vectors by a scalar

Vectors can be multiplied by a scalar which changes the size of the vector but not the direction.

$$k = \begin{pmatrix} \mathbf{3} \\ -\mathbf{2} \end{pmatrix}$$

The vector 2k is twice as long as the vector k. Double each number in k to get 2k.

Adding vectors

Vectors can be added by drawing the first vector, then starting the second vector where the first vector ends.

The single vector they create (\overrightarrow{XZ}) is the resultant vector.

Travelling from X to Y, then from Y to Z, is the same as travelling from X to Z.

Subtracting vectors

Subtracting a vector is the same as adding a negative vector.

 $\overrightarrow{YX} + \overrightarrow{XZ} = \overrightarrow{YZ}$

Since the vector \overline{YX} has the same magnitude but opposite direction to the vector \overline{XY} :

$$\overline{YX} = \overline{-XY}$$
$$\overline{-XY} + \overline{XZ} = \overline{YZ}$$
$$-\binom{4}{2} + \binom{5}{-2} = \binom{-4+5}{-2+-2} = \binom{1}{-4}$$

Assignment

Exercise 6

7. In $\triangle XYZ$, the mid-point of YZ is M. If $\overrightarrow{XY} = \mathbf{s}$ and $\overrightarrow{ZX} = \mathbf{t}$, find \overrightarrow{XM} in terms

Solution

GIVEN

 $\overrightarrow{XY} = s$

 $\overline{ZX} = t$

YM =MZ (Since M is the midpoint of YZ)

To find :-

 $\overrightarrow{XM} = \overrightarrow{XY} + \frac{1}{2} \overrightarrow{YZ}$ $\overrightarrow{XM} = s + \frac{1}{2} \overrightarrow{YZ}$

So, to find \overline{YZ}

 $\overrightarrow{YZ} = \overrightarrow{YX} + \overrightarrow{XZ}$ $\overrightarrow{YZ} = -s + (-t)$

$$YZ = -s - t$$

Now To find XM:-

$$\overrightarrow{XM} = s + \frac{1}{2} YZ$$

$$\overrightarrow{XM} = s + \frac{1}{2} (-s - t)$$

$$= s - \frac{1}{2} s - \frac{1}{2} t$$

$$= \frac{2 - s - t}{2}$$

$$= \frac{s - t}{2}$$

$$\overrightarrow{XM} = \frac{1}{2} s - \frac{1}{2} t$$

