CHAPTER - 8

SETS, VECTORS AND FUNCTIONS

- Topic - Vectors
- Vectors in Geometry

In geometry problems involving vectors, the vectors can be written using a pair of capital letters with an arrow above them.

Vectors

A vector quantity has both size and direction. Vectors can be added, subtracted and multiplied by a scalar. Geometrical problems can be solved using vectors.

Vector addition and subtraction

When 2 vectors are added or subtracted the vector produced is called the resultant.

The resultant is identified by a double arrowhead.
To obtain the resultant vector $a+b$, the tail of b is joined to the nose of a.

To obtain the resultant vector $b+a$, the tail of a is joined to the nose of b.

So adding "nose to tail" or "tail to nose" gives the same resultant vector.

Multiplication by a Scalar

- Ordinary numbers are scalars
- Scalars are easy to use. Just treat them as normal numbers.
- Scalars have magnitude but no direction. Vectors can be multiplied by a scalar to produce another vector

When \mathbf{x} is multiplied by -3 the result is $-3 \mathbf{x}$.

Note:
(1) The negative sign reverses the direction of the vector.

Relationship between hexagon and

vector

Remember: A hexagon is a six-sided polygon or 6-gon.
The word hexagon comes from the Greek 'hex', meaning six, and 'gonia', meaning corner or angle.

1) Opposite sides of a regular hexagon are parallel Side AB parallel to side DE
Side $B C$ parallel to side EF
Side CD parallel to side FA
2) For a regular hexagon all sides are equal
3) For a regular hexagon. Given side $\mathrm{BC}=\boldsymbol{x}$ then diagonal $A D=2 x$
4)

In the figure, we should take note of the following vectors:

1) $\overrightarrow{B E}=2 \overrightarrow{B O}=2 \overrightarrow{O E}$
2) $\overrightarrow{O A}=\overrightarrow{C B}=a$
3) $\overrightarrow{O C}=\overrightarrow{A B}=c$

A vector between two points \mathbf{A} and B is described as: $\overrightarrow{A B}$, or a

The vector can also be represented by the column vector $\binom{3}{4}$.
The top number is how many to move in the positive \boldsymbol{X}-direction and the bottom number is how many to move in the positive \boldsymbol{y}-direction. Vectors are equal if they have the same magnitude and direction regardless of where they are. Example:-
$\overrightarrow{C D}=\binom{1}{4} \overrightarrow{E F}=\binom{1}{4}$

So $\overrightarrow{C D}=\overrightarrow{E F}$

Vector arithmetic

Multiplying vectors by a scalar

Vectors can be multiplied by a scalar which changes the size of the vector but not the direction.
$k=\binom{3}{-2}$
The vector $2 k$ is twice as long as the vector k. Double each number in k to get $2 k$.

$$
2 k=\binom{6}{-4}
$$

Adding vectors

Vectors can be added by drawing the first vector, then starting the second vector where the first vector ends.

$$
\binom{4}{2}+\binom{1}{-4}=\binom{4+1}{2+-4}=\binom{5}{-2}
$$

The single vector they create $(\overrightarrow{X Z})$ is the resultant vector.
Travelling from X to Y, then from Y to Z, is the same as travelling from X to Z.

Subtracting vectors

Subtracting a vector is the same as adding a negative vector.

$\overrightarrow{Y X}+\overrightarrow{X Z}=\overrightarrow{Y Z}$
Since the vector \bar{Y} ' has the same magnitude but opposite direction to the vector $\overrightarrow{X Y}$:
$\overrightarrow{Y X}=\overrightarrow{-X Y}$
$-X \dot{Y}+X \dot{Z}=Y \dot{Z}$
$-\binom{4}{2}+\binom{5}{-2}=\binom{-4+5}{-2+-2}=\binom{1}{-4}$

Assignment Exercise 6

7. In $\triangle X Y Z$, the mid-point of $Y Z$ is M. If $\overrightarrow{\mathrm{XY}}=\mathbf{s}$ and $\overrightarrow{\mathrm{ZX}}=\mathbf{t}$, find $\overrightarrow{\mathrm{XM}}$ in terms

Solution

GIVEN
$\overrightarrow{X Y}=s$
ZXI = t
$Y M=M Z$ (Since M is the midpoint of $Y Z$)

To find :-
$\overrightarrow{X M}=\overrightarrow{X Y}+\frac{1}{2} \overrightarrow{Y Z}$
$\overrightarrow{X M}=s+\frac{1}{2} \overrightarrow{Y Z}$
So, to find $\overrightarrow{\mathrm{Y} Z}$
$\overrightarrow{Y Z}=\overrightarrow{Y X}+\overrightarrow{X Z}$
$\overrightarrow{\mathrm{YZ}}=-\mathrm{s}+(-\mathrm{t})$
$\mathrm{YZ}=-\mathrm{s}-\mathrm{t}$
Now To find $\overrightarrow{\mathrm{XM}}$:-

$$
\begin{aligned}
\overrightarrow{X M} & =s+\frac{1}{2} Y Z \\
\overrightarrow{X M} & =s+\frac{1}{2}(-s-t) \\
& =s-\frac{1}{2} s-\frac{1}{2} t \\
& =\frac{2-s-t}{2} \\
& =\frac{s-t}{2}
\end{aligned}
$$

$$
\overrightarrow{X M}=\frac{1}{2} s-\frac{1}{2} t
$$

