## **Assignment**

## **Exercise 7**

40. Draw separate diagrams to illustrate the following.

(a) 
$$\overrightarrow{FE} + \overrightarrow{JI}$$

(b) 
$$\overrightarrow{HG} + \overrightarrow{FE}$$

(c) 
$$\overrightarrow{JI} - \overrightarrow{FE}$$

(d) 
$$\overrightarrow{HG} + \overrightarrow{JI}$$

## **Solution**

(a) 
$$\overrightarrow{FE} + \overrightarrow{JI}$$



(b) 
$$\overrightarrow{HG} + \overrightarrow{FE}$$



(c)  $\overrightarrow{\mathbf{J}} - \overrightarrow{\mathbf{FE}}$ 



(d)  $\overrightarrow{HG} + \overrightarrow{JI}$ 



TO find a vector given two co-ordinates :-

$$\begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix}$$



**Assignment** 

### Exercise 8

1. If D has coordinates (7, 2) and E has coordinates (9, 0), find the column vector for  $\overrightarrow{DE}$ .

## **Solution:-**

Column vector for DE

$$= \left( \begin{array}{c} 9-7 \\ 0-2 \end{array} \right)$$

$$\overrightarrow{DE} = \left(\begin{array}{c} 2 \\ -2 \end{array}\right)$$

2. Find the column vector  $\overrightarrow{XY}$  where X and Y have coordinates (-1, 4) and (5, 2) respectively.

## Solution:-

Column vector for XY

$$=\left(\begin{array}{c} 5-(-1) \\ 2-4 \end{array}\right)$$

$$\overrightarrow{XY} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$$

If A has the coordinate (1,2) and B has the coordinate (6,4), find the column vector for  $\overrightarrow{AB}$ 

$$\overrightarrow{AB} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

Find the column vector for BA

$$\overrightarrow{BA} = \begin{pmatrix} -5 \\ -2 \end{pmatrix}$$



# **Position Vector**

A position vector is a vector which starts at the origin. Sometimes a vector is fixed in position relative to a specific point. The position vector of the point

A(x,y) is the vector  $\overrightarrow{OA} = \begin{pmatrix} x \\ y \end{pmatrix}$ 



The position vector of (2, 3) is  $\binom{2}{3}$ .

Here are two results about position vectors:

If A and B have position vectors a and b respectively then;

1. 
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \mathbf{b} - \mathbf{a}$$



# The length of a vector is called the magnitude or modulus of the vector.

The magnitude of vector a is written as |a|.

The magnitude of the vector  $\overrightarrow{AB}$  is written as |AB|.

If  $\mathbf{a} = \begin{pmatrix} x \\ y \end{pmatrix}$  then the magnitude  $|\mathbf{a}| = \sqrt{x^2 + y^2}$  (using the Pythagorean theorem)



#### Example:

### Express each of the following vectors as a column vector and find its magnitude



$$\overrightarrow{PQ} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} \text{ and } |PQ| = \sqrt{(-2)^2 + 3^2} = \sqrt{13} \text{ units}$$

$$\overrightarrow{RS} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \text{ and } |RS| = \sqrt{4^2 + 0^2} = 4 \text{ units}$$

$$\overrightarrow{RS} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
 and  $|RS| = \sqrt{4^2 + 0^2} = 4$  units