level 9 - Chapter 8

Assignment
 Exercise 7

40. Draw separate diagrams to illustrate the following.
(a) $\overrightarrow{\mathrm{FE}}+\overrightarrow{\mathrm{J}}$
(b) $\overrightarrow{\mathrm{HG}}+\overrightarrow{\mathrm{FE}}$
(c) $\overrightarrow{\mathrm{JI}}-\overrightarrow{\mathrm{FE}}$
(d) $\overrightarrow{\mathrm{HG}}+\overrightarrow{\mathrm{JI}}$

Solution

(a) $\overrightarrow{\mathrm{FE}}+\overrightarrow{\mathrm{JI}}$

(b) $\overrightarrow{\mathrm{HG}}+\overrightarrow{\mathrm{FE}}$

(c) $\overrightarrow{\mathrm{I}}-\overrightarrow{\mathrm{FE}}$

(d) $\overrightarrow{\mathrm{HG}}+\overrightarrow{\mathrm{JI}}$

TO find a vector given two co-ordinates :-

$$
\left[\begin{array}{l}
x_{2}-x_{1} \\
y_{2}-y_{1}
\end{array}\right]
$$

Assignment

Exercise 8

1. If D has coordinates $(7,2)$ and E has coordinates $(9,0)$, find the column vector for $\overrightarrow{\mathrm{DE}}$.

Solution:-
Column vector for $\overrightarrow{\mathrm{DE}}$

$$
=\binom{9-7}{0-2}
$$

$$
\overrightarrow{D E}=\binom{2}{-2}
$$

2. Find the column vector $\overrightarrow{X Y}$ where X and Y have coordinates $(-1,4)$ and $(5,2)$ respectively.
Solution:-
Column vector for $\overrightarrow{X Y}$

$$
\begin{aligned}
& =\binom{5-(-1)}{2-4} \\
& \overrightarrow{X Y}=\binom{6}{-2}
\end{aligned}
$$

If A has the coordinate $(1,2)$ and B has the coordinate $(6,4)$, find the column vector for $\overrightarrow{A B}$

$$
\overrightarrow{A B}=\binom{5}{2}
$$

Find the column vector for $\overrightarrow{B A}$

$$
\overrightarrow{B A}=\binom{-5}{-2}
$$

Position Vector

A position vector is a vector which starts at the origin. Sometimes a vector is fixed in position relative to a specific point. The position vector of the point $\boldsymbol{A}(\boldsymbol{x}, \boldsymbol{y})$ is the vector $\overrightarrow{O A}=\binom{x}{y}$

The position vector of $(2,3)$ is $\binom{2}{3}$.

Here are two results about position vectors:
If \mathbf{A} and \mathbf{B} have position vectors \mathbf{a} and \mathbf{b} respectively then;

1. $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\boldsymbol{b}-\boldsymbol{a}$

The length of a vector is called the magnitude or modulus of the vector.

The magnitude of vector \mathbf{a} is written as $|\mathbf{a}|$.
The magnitude of the vector $\overrightarrow{A B}$ is written as $|A B|$.

If $\mathbf{a}=\binom{x}{y}$ then the magnitude $|\mathbf{a}|=\sqrt{x^{2}+y^{2}}$ (using the Pythagorean theorem)

Example:

Express each of the following vectors as a column vector and find its magnitude

Solution:-

$$
\begin{aligned}
& \overrightarrow{P Q}=\binom{-2}{3} \text { and }|P Q|=\sqrt{(-2)^{2}+3^{2}}=\sqrt{13} \text { units } \\
& \overrightarrow{R S}=\binom{4}{0} \text { and }|R S|=\sqrt{4^{2}+0^{2}}=4 \text { units }
\end{aligned}
$$

